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ABSTRACT
As matrix computation becomes increasingly prevalent in large-

scale data analysis, distributed matrix computation solutions have

emerged. These solutions support query interfaces of linear alge-

bra expressions, which often contain redundant subexpressions,

i.e., common and loop-constant subexpressions. Hence, existing

compilers rewrite queries to eliminate such redundancy. However,

due to the large search space, they fail to find all redundant subex-

pressions, especially for matrix multiplication chains. Furthermore,

redundancy elimination may change the original execution order

of operators, and have negative impacts. To reduce the large search

space and avoid the negative impacts, we propose automatic elim-
ination and adaptive elimination, respectively. In particular, auto-

matic elimination adopts a block-wise search that exploits the prop-

erties of matrix computation for speed-up. Adaptive elimination

employs a cost model and a dynamic programming-based method

to generate efficient plans for redundancy elimination. Finally, we

implement ReMac atop SystemDS, eliminating redundancy in dis-

tributed matrix computation. In our experiments, ReMac is able to

generate efficient execution plans at affordable overhead costs, and

outperforms state-of-the-art solutions by an order of magnitude.
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1 INTRODUCTION
In the era of Big Data, techniques in the field of data analysis (e.g.,

machine learning and data science) are rapidly emerging. Among

these techniques, matrix computing has become a fundamental
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Figure 1: Different Execution Plans for 𝒅𝑇𝑨𝑇𝑨𝒅 in DFP

and widely used utility. Examples of applications include linear

regression, collaborative filtering, and dimensionality reduction.

To apply matrix computation on large-scale datasets, numbers of

systems and solutions have been proposed, such as SystemDS [7, 8],

MLlib [11], ScaLAPACK [2], and SciDB [12].

Based on these systems and solutions, a variety of research works

have contributed to optimize distributed matrix computation (e.g.,

operator folding [14], matrix repartition [31], and multiplication

acceleration [15, 17]). However, these contributions do not con-

sider the redundancy in execution plans. For example, consider

the Davidon-Fletcher-Powell (DFP) formulation. One can use the

expression 𝒅𝑇𝑨𝑇𝑨𝒅 for ∥𝑨𝒅∥2
2
, where 𝑨 represents a dataset, and

𝒅 is a vector learnt in iterations. A typical execution plan is to per-

form three matrix multiplications, while an alternative is to reuse

the result of 𝑨𝒅 and eliminate one redundant matrix multiplication.

There are solutions for distributed matrix computation that pro-

vide limited support for redundancy elimination. SystemDS [10],

MATFAST [32], and LIMA [24] support explicit common subex-

pression elimination (CSE). As an example, the identical subtrees

in the execution plan in Figure 1(a) explicitly indicate the CSE of

𝑨𝒅. MATFAST and LIMA also support explicit loop-constant subex-
pression elimination (LSE), i.e., the elimination of subtrees with

loop-constant outputs. Nonetheless, for an algorithm containing

common or loop-constant subexpressions, the execution plan may

not explicitly indicate CSE or LSE. In this case, CSE and LSE are

considered to be implicit. For example, the execution plan in Figure

1(b) contains no identical subtree, although 𝒅𝑇𝑨𝑇𝑨𝒅 has a common

subexpression 𝑨𝒅. Since the above solutions are oblivious to im-

plicit CSE and LSE, they fail to make full advantage of redundancy

elimination. In order to apply implicit CSE, SPORES [29] extends

the equality saturation technique used in compilers. However, it

adopts sampling to reduce the huge search space of multiplication

chains, and its purpose is not to find and exploit all CSE. Hence,

the issue of finding implicit CSE and LSE remains unsolved.

Furthermore, even if a plan optimizer manages to find implicit

CSE and LSE, the optimizer needs to determine whether to ap-

ply them. For example, in DFP, the matrix 𝑨 of 𝒅𝑇𝑨𝑇𝑨𝒅 is loop-

constant, and so is𝑨𝑇𝑨. However, if we apply the LSE of𝑨𝑇𝑨, then
we must first compute 𝑨𝑇𝑨, as depicted in Figure 1(c). Given that

𝑨 is a distributed matrix, this LSE may lead to expensive operations

https://doi.org/10.1145/3514221.3517877
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Figure 2: Different Plans for 𝑯𝑨𝑇𝑨𝒅𝒅𝑇𝑨𝑇𝑨𝑯 in DFP
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(a) Distributed Setting
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(b) Single-node Setting

Figure 3: Performance of SystemDS on DFP

and become detrimental to performance, although it eliminates

redundancy. In addition, there are contradictory CSE and LSE. For

example, in 𝒅𝑇𝑨𝑇𝑨𝒅, we cannot apply the elimination on both 𝑨𝒅
and 𝑨𝑇𝑨. In general, there is a trade-off in redundancy elimination.

In this paper, we implement ReMac to explore redundancy elim-

ination in distributed matrix computation. First, we aim to find

implicit CSE and LSE, to accomplish automatic elimination. Due to
the complex properties of matrix computation (e.g., distributivity

and associativity), it is impractical to traverse all execution plans.

Interestingly, string matching is a simple yet fast approach to search

matrix multiplication chains, where the internal order of operators

does not matter. Hence, ReMac splits an execution plan into blocks

of matrix multiplication chains, and applies a block-wise search to

find implicit CSE and LSE. In our experiments, ReMac achieves a

41.5x speedup over SystemDS via automatic elimination in the best

case, but it can also be 10.0x slower than SystemDS due to misused

CSE or LSE. Then, we center on adaptive elimination, since the

CSE and LSE found by automatic elimination may be detrimental

or contradictory. In particular, we treat each CSE and LSE as an

option, and the goal of adaptive elimination is to obtain the effi-

cient combination of these options. To this end, we devise a cost
model to evaluate the overheads of elimination options and, more

importantly, a dynamic programming-based method to address the

combinatorial explosion of options. Our experiments show that

adaptive elimination prevents ReMac from abusing CSE or LSE and

achieves a 14.4x speedup over SystemDS, ScaLAPACK, and SciDB.

In the rest, we highlight the motivation for automatic and adap-

tive elimination in Section 2, and make the following contributions.

• We propose a block-wise search for automatic elimination in

Section 3, that exploits the properties of matrix computation to

accelerate the search for implicit CSE and LSE.

• We contribute to adaptive elimination in Section 4, which adopts

a cost model to evaluate CSE and LSE options as well as a dy-
namic programming-based method to address the combinatorial

explosion of CSE and LSE options.

• We discuss the implementation of ReMac (based on SystemDS)

in Section 5, and demonstrate its performance in Section 6.

In addition, we introduce related work in Section 7 and summa-

rize our work in Section 8.

2 MOTIVATION
We elaborate the redundancy in matrix computation, motivating

automatic elimination, in Section 2.1. Moreover, to take full advan-

tage of redundancy elimination in varying cases, we need adaptive

elimination, the benefits of which are described in Section 2.2.

2.1 Motivation for Automatic Elimination
There are two types of matrix computation redundancy, namely

common subexpressions and loop-constant subexpressions.

Common Subexpression Elimination (CSE). CSE refers to the

elimination of instances of identical subexpressions. Given an exe-

cution plan, its identical subtrees explicitly indicate CSE, termed as

explicit CSE. Matrix computation solutions (e.g., SystemDS and Ten-

sorFlow [4]) apply explicit CSE to the execution plans they generate.

For example, solving the least squares problem 𝑚𝑖𝑛
𝒙∈R𝑛

∥𝑨𝒙 − 𝒃 ∥
2
us-

ing DFP involves the following equations:

while 𝑙𝑜𝑜𝑝_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 :

𝒈 = · · ·
𝒅 = 𝑯𝒈 (1)

𝑯 = 𝑯 − 𝑯𝑨𝑇𝑨𝒅𝒅𝑇𝑨𝑇𝑨𝑯

𝒅𝑇𝑨𝑇𝑨𝑯𝑨𝑇𝑨𝒅
+ 𝒅𝒅𝑇

2𝒅𝑇𝑨𝑇𝑨𝒅
(2)

Here, 𝑯 is an inverse Hessian approximation (symmetric matrix), 𝒈
is a gradient vector, and𝑨 represents an input dataset. For Equations

1 and 2, SystemDS is able to apply the explicit CSE of 𝑯𝒈.
However, given that an expression typically has multiple equiva-

lent execution plans, some CSE is explicit only in certain execution

plans. In particular, we consider the CSE, not explicit in the ex-

ecution plan, as implicit. For example, as shown in Figure 2(a),

since the execution plan contains no identical subtree, the CSE

for 𝒅𝑇𝑨𝑇𝑨 = (𝑨𝑇𝑨𝒅)𝑇 is implicit. In order to find and apply this

implicit CSE, we need to transform the execution plan into an equiv-

alent plan that computes 𝒅𝑇𝑨𝑇𝑨 in (𝑨𝑇𝑨𝒅)𝑇 , as depicted in Figure
2(b). As a result, to take full advantage of redundancy elimination,

we need to search equivalent execution plans for implicit CSE.

Loop-constant Subexpression Elimination (LSE). LSE refers to

elimination of subexpressions having constant results in a loop. For

example, in Equation 2,𝑨𝑇𝑨 is loop-constant, since the program in

the loop does not update𝑨. Therefore, the LSE of𝑨𝑇𝑨 is to compute



𝑨𝑇𝑨 before the loop, and reuse the result in the loop. Similar to CSE,

we classify LSE as explicit and implicit. We consider LSE as explicit,

if there are subtrees in the execution plan explicitly indicating the

loop-constant subexpression. Otherwise, we consider the LSE to

be implicit. As depicted in Figure 2(a), the LSE of 𝑨𝑇𝑨 is implicit,

since the execution plan does not contain the multiplication of 𝑨𝑇

and 𝑨. Alternatively, we can find this LSE in the equivalent plan as

shown in Figure 2(c). Hence, we need to transform the execution

plan into equivalent plans, to find all redundant subexpressions.

Despite the complexity of searching for implicit CSE and LSE,

there are two factors motivating our research on how to automati-

cally apply CSE and LSE. First, both explicit and implicit elimination

are critical to performance. As shown in Figure 3(a), for DFP, explicit

elimination achieves a 1.8x speedup, while explicit and implicit elim-

ination together achieve a 2.4x speedup in the best case. Second, it

is non-trivial for users to handle all elimination. For illustration, to

eliminate the loop constant subexpression 𝑨𝑇𝑨 in DFP, a user adds

a new line 𝑻 = 𝑨𝑇𝑨 outside the loop and substitute 𝑻 for 𝑨𝑇𝑨
in Equation 2. However, the entire DFP algorithm has 1391 differ-

ent CSE and LSE options, each of which eliminates a redundant

subexpression. Hence, we propose automatic elimination, to both

accelerate the execution and ease users’ programming burden.

2.2 Motivation for Adaptive Elimination
Intuitively, we should apply all found elimination options to exploit

the benefits of redundancy elimination. However, this is impractical,

based on the following two observations. First, elimination options

may contradict each other, which means we cannot apply them in

one execution plan. Second, elimination options may change the

original execution order and become detrimental to performance,

in which case we should abandon those elimination options.

Contradictory Elimination Options. Multiple elimination op-

tions may adhere to different execution order, so that they do not

fit in one execution plan, i.e., the options are contradictory. For

example, in Equation 2, there are two contradictory elimination

options of 𝑨𝑇𝑨 and 𝑨𝒅, since we cannot multiply 𝑨 with both 𝑨𝑇

and 𝒅 when calculating 𝑨𝑇𝑨𝒅. Moreover, the contradiction has

cascading effects on choosing other options. Specifically, the LSE

option of 𝑨𝑇𝑨 can be combined with the CSE option of 𝒅𝒅𝑇 , while
the CSE option of𝑨𝒅 can be combined with the CSE option of 𝑯𝑨𝑇

.

Hence, it is non-trivial to know which combination achieves the

optimal performance. As depicted in Figure 3(a), the contradictions

may lead to a suboptimal combination of elimination options, that

performs worse than applying only explicit elimination options.

Detrimental EliminationOptions.An elimination option is detri-

mental to performance, if it changes the original execution order,

offsetting the benefits of the elimination. For illustration, as depicted

in Figure 2(a), the original execution plan for 𝑯𝑨𝑇𝑨𝒅𝒅𝑇𝑨𝑇𝑨𝑯
contains six matrix-vector multiplications and one vector-vector

multiplication. An alternative execution plan in Figure 2(c) is to

eliminate𝑨𝑇𝑨 and 𝒅𝒅𝑇 . However, the elimination changes the orig-

inal execution order, leading to six matrix-matrix multiplications.

Furthermore, the communication overhead in distributed environ-

ments intensifies the side effect of CSE and LSE. For example, the

implementations of multiplications (e.g., BMM for matrix-vector

multiplications, and CPMM for matrix-matrix multiplications [8])

are extremely different in terms of communication overhead. As

shown in Figure 3(b), in a single-node environment with sufficient

memory, the elimination of 𝑨𝑇𝑨 and 𝒅𝒅𝑇 improves performance.

Nonetheless, in a distributed environment, the same elimination

switches the original BMM to CPMM for matrix-matrix multiplica-

tions and reduces performance by 400%, as depicted in Figure 3(a).

Due to contradictory elimination options, we have to pick elim-

ination options to apply. Typically, we can conservatively pick

the elimination options adhering the original execution order, or

disregard the original execution order to make a more aggressive

pick. However, neither of these strategies adapts to all cases. The

conservative strategy may lose potential performance improve-

ment attributed to unpicked options, while the aggressive strategy

may suffer from detrimental options. It motivates us to explore an

adaptive strategy, picking elimination options in a right way.

3 AUTOMATIC ELIMINATION
As described in Section 2.1, it is essential that a system automati-

cally searches for CSE and LSE to improve performance. Next, we

will elaborate the challenges to search for CSE and LSE in Section

3.1. Sections 3.2 and 3.3 will explain how ReMac overcomes these

challenges to find CSE and LSE, respectively.

3.1 Challenges to Search for CSE and LSE
There are two challenges to search for CSE and LSE in practical.

Duplicated Search. A basic method to find redundant subexpres-

sions is tree-wise search, which traverses all possible plan trees

and detects whether there are common or loop-constant opera-

tors. Nonetheless, this traversal process involves duplicated search.

For example, in Equation 2 with 𝒅 substituted, the numerator of

𝑯𝑨𝑇𝑨𝒅𝒅𝑇𝑨𝑇𝑨𝑯
𝒅𝑇𝑨𝑇𝑨𝑯𝑨𝑇𝑨𝒅

has two million possible plans. Tree-wise search

simply regards the plan trees with different subtrees for the nu-

merator as different, even though the trees share the same subtree

for the denominator. Hence, tree-wise search would suffer from

revisiting the same subtree for the denominator millions of times.

Large Search Space. Tree-wise search is strict with the inter-

nal execution order of subexpressions, enlarging the search space.

Typically, a subexpression has equivalent plan subtrees represent-

ing different execution order (e.g., (𝑨𝑇𝑨)𝒅 and 𝑨𝑇 (𝑨𝒅) for the
subexpression 𝑨𝑇𝑨𝒅). This complicates the matching of common

subexpressions. For example, (𝑨𝑇𝑨)𝒅 and 𝑨𝑇 (𝑨𝒅) do not match

because they have no common operators. As a result, tree-wise

search has to traverse the plan subtrees for (𝑨𝑇𝑨)𝒅 and 𝑨𝑇 (𝑨𝒅)
respectively, to identify the CSE of𝑨𝑇𝑨𝒅. To mitigate this, SPORES

[29] employs equality saturation. However, when handling a long

multiplication chain, it still requires the sampling technique that

sacrifices potential redundancy elimination for a smaller search

space.

In general, the tree-wise search for CSE and LSE is impractical.

Hence, we propose a block-wise search to avoid duplicate search

and reduce the large search space, in finding all CSE and LSE.

3.2 Searching for CSE
We have the following rationales when designing a novel block-

wise search method for CSE.
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Figure 4: The Coordinate and Split Blocks for DFP

Rationale 1: We observe that transpositions significantly com-

plicate the execution plans for multiplication chains. For example,

𝑯𝑨𝑇𝑨𝑯𝒈𝒈𝑇𝑯𝑇𝑨𝑇𝑨𝑯 has over two million different execution

plans, whereas, without transposition, a multiplication chain of

10 matrices has only 4862 different plans, i.e., the 10th Catalan

number. In order to reduce the search space incurred by transposi-

tions, we push down transpositions, and deal with CSE related to

transpositions exclusively.

Rationale 2: As illustrated in Section 3.1, due to duplicated

search, we do not search a complex expression in a tree-wise man-

ner. Instead, we split an expression into blocks, and search for CSE

by blocks. Note that the divide-and-rule approach may exclude the

CSE options across blocks. However, we can additionally find and

include such options with a negligible overhead cost.

Rationale 3: To reduce the large search space, we disregard the

internal execution order of matrix multiplication chains, according

to the non-commutative and associative properties of matrix mul-

tiplication. For illustration, when we try to identify the common

subexpression𝑨𝑇𝑨𝒅, it does not matter whether the subexpression

is computed in the order of (𝑨𝑇𝑨)𝒅 or 𝑨𝑇 (𝑨𝒅).
Based on the rationales above, we propose our novel block-wise

search for CSE, consisting of three steps as follows.

➊ Push Down Transpositions. This step reduces the search space
via transposition push-down, as explained in Rationale 1. In specific,

we bring forward the execution of transposition operators (e.g.,

from (𝑨𝒅)𝑇 into 𝒅𝑇𝑨𝑇
), following the property of matrix transpose.

However, while the transposition push-down reduce large search

space, it also prevents us from finding certain implicit common

subexpressions (e.g., 𝑨𝒅 in 𝑨𝒅𝒅𝑇𝑨𝑇
). To mitigate the side effect,

wemodify the identification for the common subexpressions hidden

from transpositions, which will be explained in Step ➌.

➋Build Coordinates and Blocks.As introduced in Rationale 2, in
this step, we split expressions into blocks. As a preparation, we use

the distributive law to expand a plan tree. Also, for convenience,

we build coordinates and take the matrices as the scales on the

coordinate axis (e.g., the coordinate built for DFP in Figure 4).

Subsequently, we split the coordinate into multiple blocks. Ac-

cording to Rationale 3, we try to make each of those blocks cor-

respond to a matrix multiplication chain. In particular, we center

on matrix multiplication, an operator with a higher cost [17] and a

higher priority than the other major operators (e.g., element-wise

addition). We split expressions at the operators which have a lower

priority than matrix multiplication, and thereby acquire blocks of

multiplication chains. For example, we split Equation 2 into five

blocks with 𝒅 substituted, 𝑯 , 𝑯𝑨𝑇𝑨𝒅𝒅𝑇𝑨𝑇𝑨𝑯 , 𝒅𝑇𝑨𝑇𝑨𝑯𝑨𝑇𝑨𝒅,
𝒅𝒅𝑇 , and 2𝒅𝑇𝑨𝑇𝑨𝒅, as depicted in Figure 4.

➌Traverse Blocks upon the Coordinate.According to Rationale
3, for the blocks of matrix multiplication chains, we employ sliding

windows to detect CSE. Here, we try all window sizes (from one

to the length of a block). Each time sliding a window, we capture

the subexpression of the window via the associative law. Then, as

shown in Figure 5, we record an entry in a hash table, where the key

represents the subexpression and the value contains the location

information, i.e., coordinates, of the window. After traversing all

blocks, we will find CSE based on the conflicts in the hash table.

Via sliding windows, we do not need to concern the internal execu-

tion order of the visited subexpression. Hence, the search space is

significantly smaller than that of the tree-wise search.

In the hash table, the key of an entry is the subexpression string.

However, as mentioned in Step ➊, this will cause 𝑨𝑯 and 𝑯𝑨𝑇
to

have different keys, despite the fact that (𝑨𝑯 )𝑇 = 𝑯𝑨𝑇
(note that

𝑯 is symmetric). Here, we compare the strings of the subexpression

and its transposition on each character in alphabetical order, and

then take the string with a smaller comparison result as the key. In

this way, 𝑨𝑯 and 𝑯𝑨𝑇
would share the same key, 𝑨𝑯 .

Discussion. Steps ➋ and ➌ focus on finding CSE inside blocks,

leaving the CSE across blocks uncovered. In particular, since we

expand expressions to split them into blocks, there may be implicit

CSE across blocks hidden by the expansion. For example, 𝑷 ·𝑿𝒀 +𝑷 ·
𝒀𝒁 +𝑿𝒀 ·𝑸 +𝒀𝒁 ·𝑸 has a common subexpression 𝑿𝒀 +𝒀𝒁 across

four blocks. However, we can discover such CSE via an extension

of the aforementioned steps. Our intuition is to first reveal the

subexpressions crossing blocks via reverting expansion, and then

detect whether those subexpressions are common based on the CSE

found inside blocks. Accordingly, in Step ➋, we extract common

factors, including identity matrices, to revert expansion and group

new blocks (e.g., 𝑰 · (𝑷𝑿𝒀 +𝑿𝒀𝑸), 𝑷 · (𝑿𝒀 + 𝒀𝒁 ), (𝑿𝒀 + 𝒀𝒁 ) · 𝑸 ,

etc.). In Step ➌, we would search for common grouped parts (e.g.,

𝑿𝒀 + 𝒀𝒁 ) in newly grouped blocks. Since we have already known

𝑿𝒀 and 𝒀𝒁 are common subexpressions, it is easy to find two

addition operators taking 𝑿𝒀 and 𝒀𝒁 as inputs, i.e., 𝑿𝒀 + 𝒀𝒁 is

common. Hence, this extension incurs a negligible overhead cost.

3.3 Searching for LSE
The search for explicit LSE is typically simple, since we only need

to determine whether the inputs of an operator is loop-constant in

an execution plan. However, the challenges to find implicit LSE are

similar to those of implicit CSE. Hence, we divide the search into

two steps to find explicit and implicit LSE, and embed the steps into

the block-wise search for CSE.

➊∗ Label Explicit LSE. In Step ➊, we also parse the loop body to

find explicit loop-constant symbols and label them to prepare for

finding implicit LSE.

➌∗ Find implicit LSE. Since the search for CSE already addresses

duplicated search and large search space, we search for implicit LSE

along with the search for CSE in Step ➌. In specific, if all matrices

in the sliding window are labeled loop-constant, we record the

subexpression corresponding to the window as an LSE option.

Discussion. Due to the expansion in Step ➋, there may be implicit

LSE across blocks as well. Similar to the aforementioned extension

of the search for CSE, we group blocks in Step ➋ and detect whether

the grouped part is loop-constant in Step ➌.
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Figure 5: Traverse the Split Blocks of DFP

Via the block-wise search, we can find both explicit and implicit

elimination options. Note that, since all transformations to expres-

sions in the search steps follow the algebraic equivalence, the found

options would not affect the expression results.

4 ADAPTIVE ELIMINATION
As shown in Section 2.2, contradictory and detrimental elimination

options motivate us to explore an adaptive strategy to find the

efficient combination of CSE and LSE options. Due to the massive

number of options and the overhead cost of evaluation, we cannot

enumerate and evaluate each combination, which will be discussed

in Section 4.1. Hence, we propose adaptive elimination, which in-

volves a cost model for evaluation in Section 4.2, and a dynamic

programming-based method for combinations in Section 4.3.

4.1 Curses in Combining Elimination Options
An intuitive method of finding the efficient combination is to enu-

merate and compare combinations via cost evaluation. However,

this may lead to an extreme overhead cost.

Efficiency vs. Accuracy in Cost Evaluation. The prerequisite of
finding the efficient combination is an accurate cost model. Since

the matrix sparsity is critical to the cost of an execution plan [20],

the prerequisite, in turn, becomes an accurate sparsity estimator.

That is, an inaccurate sparsity estimator may result in a wrong cost

evaluation and thereby a suboptimal execution plan. However, on

the other hand, an accurate estimator inevitably causes inefficient

cost evaluation, extremely prolonging compilation time. Hence,

we have to carefully choose a sparsity estimator, which will be

discussed in Section 4.2.

Combinatorial Explosion in Enumeration. Due to the large

number of elimination options and the combinatorial explosion,

enumerating and evaluating elimination combinations would lead

to unaffordable overhead costs. For example, the DFP algorithm

has 1391 options of CSE and LSE, ending up with millions of pos-

sible combinations to be enumerated and evaluated. Hence, we

have to avoid brute-force enumeration when finding the efficient

combination of CSE and LSE, which will be discussed in Section 4.3.

4.2 The Cost Model
ReMac employs a cost model to evaluate operators, which involves

choosing the troublesome sparsity estimator. For an operator 𝑂 in

a plan tree, the cost model regards its cost, 𝑐𝑂 , as two parts: the

computation cost, 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑂 , and the transmission cost, 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑂 .

𝑐𝑂 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑂 + 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑂 . (3)

Here, 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑂 considers the impacts of matrix partition schemes.

Computation Cost. 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑂 indicates the computation cost

of 𝑂 , which is related to the number of floating point operations

(FLOP) [14, 22]. In specific, ReMac computes 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑂 as follows:

𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑂 = 𝑤 𝑓 𝑙𝑜𝑝 𝐹𝐿𝑂𝑃𝑂 , (4)

where𝑤 𝑓 𝑙𝑜𝑝 is a constant representing the reciprocal of the peak

floating point performance of a cluster, and 𝐹𝐿𝑂𝑃𝑂 represents the

number of FLOP attributed to 𝑂 . Note that the cost model assumes

only one algorithm is running, not considering the resource compe-

tition in multi-tenant environments. However, the goal of the model

is not to calculate exactly the real execution time, but to compare

the magnitude of the costs of various plans for adaptive elimina-

tion. Hence, despite the complexity of real-world environments,

our simplified model is valid in generating an efficient plan.

To illustrate the computation of 𝐹𝐿𝑂𝑃𝑂 , we take a certain opera-

tor, matrix multiplication of 𝑼 and 𝑽 , as an example. 𝑼 is a 𝑅𝑼 ×𝐶𝑼
matrix with sparsity of 𝑆𝑼 , and 𝑽 is a 𝐶𝑼 ×𝐶𝑽 matrix with spar-

sity of 𝑆𝑽 . Then, ReMac computes 𝐹𝐿𝑂𝑃𝑂 by 3 (𝑅𝑼 𝐶𝑼 𝐶𝑽 𝑆𝑼 𝑆𝑽 ),
wheremultiplication and addition accounts for 2 (𝑅𝑼 𝐶𝑼 𝐶𝑽 𝑆𝑼 𝑆𝑽 )
and 𝑅𝑼 𝐶𝑼 𝐶𝑽 𝑆𝑼 𝑆𝑽 , respectively. Clearly, the sparsity directly de-

cides the value of 𝐹𝐿𝑂𝑃𝑂 .

Transmission Cost. 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑂 indicates the costs attributed to

four transmission primitives: collection refers to the collection of

data from a cluster, broadcast refers to the broadcast of data to a

cluster, shuffle refers to the exchange of data among nodes in a clus-

ter, and dfs refers to the data transmission incurred by interacting

with a distributed file system. In particular, broadcast and shuffle
cover the transmission of partitioning matrices. ReMac computes

𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑂 by accumulating these costs, i.e.,

𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑂 =
∑︁

𝑝𝑟 ∈𝑃𝑅
𝑤𝑝𝑟 𝐷𝑝𝑟 , (5)

where 𝑃𝑅 is the set of transmission primitives,𝑤𝑝𝑟 is the reciprocal

of the transmission speed of 𝑝𝑟 , and 𝐷𝑝𝑟 is the data volume in 𝑝𝑟 .

For example,𝑂 is a broadcast-based matrix multiplication (BMM)

[8, 17] of 𝑼 and 𝑽 , where 𝑼 is distributed across a cluster and 𝑽
is in local memory. In this case, the transmission of 𝑂 involves

broadcasting 𝑽 to join 𝑼 and 𝑽 , and aggregating the products of

matrix blocks by rows with a shuffle. Here, the broadcast partitions

𝑽 , and the shuffle partitions the product of 𝑼 · 𝑽 .
First, for the broadcast process, 𝐷broadcast = 𝑠𝑖𝑧𝑒 (𝑽 ). Here, the

value of 𝑠𝑖𝑧𝑒 (𝑽 ) depends on the storage format of 𝑽 , which relies

on the sparsity 𝑆𝑽 . In specific, following SystemDS, we use a dense

format if 𝑆𝑽 > 0.4. Moreover, when using a sparse format, 𝑠𝑖𝑧𝑒 (𝑽 )
is linearly related to 𝑆𝑽 . For example, when 0.0004 < 𝑆𝑽 ⩽ 0.4, we

use compressed sparse rows to store 𝑽 . Then, 𝑠𝑖𝑧𝑒 (𝑽 ) = 𝛼𝑆𝑽 + 𝛽 ,
where 𝛼𝑆𝑽 is the size of the arrays to store the non-zeros and



column indexes, and 𝛽 is the size of the row pointers and other

meta data fields.

Second, BMM shuffles the products between the blocks of 𝑼 and

𝑽 , the average size of which is 𝑠𝑖𝑧𝑒 (one block of 𝑼 ·one block of 𝑽 ).
If 𝑼 is split into 𝐵𝑼 blocks, then the size of shuffled data is 𝐵𝑼 times

of 𝑠𝑖𝑧𝑒 (one block of 𝑼 ·one block of 𝑽 ). However, in each partition,

ReMac aggregates the blocks of the same rows before the shuffle,

so as to reduce the shuffled data. Hence, if in one partition, there

are 𝑃𝑼 blocks having the same rows, then we have

𝐷shuffle = 𝑠𝑖𝑧𝑒 (one block of 𝑼 · one block of 𝑽 ) × 𝐵𝑼 /𝑃𝑼 . (6)

It is worth noting that ReMac inherits the hash partition scheme

of matrices exploited in SystemDS. However, the cost model is

not coupled with a fixed partition scheme. That is, for a different

partition scheme of 𝑼 , the terms in Equation 6 will change. For

example, if 𝑼 is split into larger blocks, then we will have a bigger

𝑠𝑖𝑧𝑒 (one block of 𝑼 · one block of 𝑽 ) as well as smaller 𝐵𝑼 and 𝑃𝑼 .

Similarly, if the partition scheme of 𝑼 changes, then 𝑃𝑼 should be

changed accordingly.

Sparsity Estimator. As aforementioned, the matrix sparsity di-

rectly decides 𝐹𝐿𝑂𝑃𝑂 in 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑂 and 𝐷𝑝𝑟 in 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑂 . Hence,

the accuracy of the sparsity estimator plays a key role in the cost

model. Nonetheless, we also require the sparsity estimator not to

incur an overwhelming overhead cost. We investigated existing

estimators, from the efficient ones (e.g., metadata-based [10] and

sampling-based [32]) to the accurate ones (e.g., MNC [27] and den-

sity map [19]). Among them, we chose two typical estimators. The

first estimator is metadata-based, which assumes uniformly dis-

tributed non-zeros and derives sparsity solely from the sparsity of

input matrices [10]. In general, it sacrifices accuracy for estimation

efficiency. According to our experimental results in Section 6.3.2, the

metadata-based cost evaluation incurs a negligible overhead cost,

but may mislead ReMac to a suboptimal combination of elimination

options. On the other hand, the state-of-the-art sparsity estimator,

MNC, exploits structural properties of matrices for accurate spar-

sity estimates. According to experiments, MNC
1
helps ReMac to

apply the efficient combination of elimination options. Nonetheless,

MNC performs additional operations to collect necessary statistics,

which may be costly.

4.3 Dynamic Programming for Combining
Elimination Options

Due to the curses in combining elimination options, it is impractical

to enumerate and evaluate each combination to find the efficient

one. Our basic idea is to evaluate each elimination option solely and

form the efficient combination based on those evaluation results. As

shown in Algorithm 1, we propose a dynamic programming-based

method, consisting of two phases, namely building and probing.
The building phase uses the cost model to evaluate the plan tree

of each elimination option (Line 4), and collates the results into a cost
graph (Line 5). Here, we build a directed acyclic graph, namely cost

graph, that collects sufficient information for the probing phase to

form the efficient elimination combination. The details of building

a cost graph will be explained in Subsection 4.3.1.

1
We choose the MNC version using Edm over h𝑟A and h𝑐B for accurate estimates [27].

Algorithm 1 The Process of Adaptive Elimination

Input: A set of CSE and LSE options, 𝑂𝑝𝑡𝑖𝑜𝑛𝑆𝑒𝑡

Output: A cost graph indicates the efficient combination of options

1: 𝐶𝑜𝑠𝑡𝐺𝑟𝑎𝑝ℎ ← an empty graph

2: // Building Phase
3: for 𝑜𝑝𝑡𝑖𝑜𝑛 in 𝑂𝑝𝑡𝑖𝑜𝑛𝑆𝑒𝑡 do
4: 𝐸𝑣𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡𝑠 ← costModel(𝑜𝑝𝑡𝑖𝑜𝑛.𝑝𝑙𝑎𝑛)
5: 𝐶𝑜𝑠𝑡𝐺𝑟𝑎𝑝ℎ ← collate(𝐶𝑜𝑠𝑡𝐺𝑟𝑎𝑝ℎ, 𝐸𝑣𝑎𝑙𝑅𝑒𝑠𝑢𝑙𝑡𝑠)
6: // Probing Phase
7: probe(𝐶𝑜𝑠𝑡𝐺𝑟𝑎𝑝ℎ.𝑡𝑜𝑝𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 )
8: return 𝐶𝑜𝑠𝑡𝐺𝑟𝑎𝑝ℎ

_

9: // construct the efficient plan tree where 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 is the top operator
10: function probe(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 )

11: // remove costs of 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟
12: 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 .𝑐𝑜𝑠𝑡𝑠 ← pick(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 .𝑐𝑜𝑠𝑡𝑠)
13: // remove downstream operators of 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟
14: for 𝑖𝑛𝑝𝑢𝑡 in 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 .𝑖𝑛𝑝𝑢𝑡𝑠 do
15: for 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚𝑂𝑝 in 𝑖𝑛𝑝𝑢𝑡 .𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚𝑂𝑝𝑠 do
16: probe(𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚𝑂𝑝)
17: 𝑖𝑛𝑝𝑢𝑡 .𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚𝑂𝑝𝑠 ← pick(𝑖𝑛𝑝𝑢𝑡 .𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚𝑂𝑝𝑠)
18: return 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟

Based on the cost graph, the probing phase constructs the plan

tree with the efficient elimination combination through a dynamic

programming process. In particular, ReMac recursively removes

operator costs (Line 12) and operators (Lines 14 - 17) from a cost

graph, and eventually achieves a pruned cost graph indicating a

plan tree. We will elaborate the process in Subsection 4.3.2.

4.3.1 Building Phase. In the building phase, we generate the effi-

cient plan trees for each CSE or LSE option, where the operators

are candidates for our final plan tree. Particularly, there may be

multiple plan trees equivalent in performance for one option. Then,

we evaluate operators of plan trees via the cost model illustrated in

Section 4.2 and collate the operators along with their costs into a

cost graph. In the following, we will explain the structure of a cost

graph and its building process, respectively.

The Structure of a Cost Graph. We follow the structure of a

plan tree to collate the evaluation results, as depicted in Figure 6(a).

After collating multiple plan trees, the tree that records evaluation

results becomes a cost graph, because the same operator may have

different upstream operators in different plans.

As depicted in Figure 6(b), a cost graph consists of multiple

dashed rectangles, each of which represent an operator. In a dashed

rectangle, the solid rectangles indicate the inputs of the operator,

and the ellipse represents the cost of the operator. Note that an

operator may have multiple values of cost, if there are CSE or LSE

options reusing the output of the operator. The blue and yellow

ellipses represent the cost reduced by LSE and CSE, respectively.

Table 1 lists the notations of operators and operator costs. Here,

we reuse the coordinates introduced in Section 3 to indicate the in-

puts of operators. For example, themultiplication of𝑨𝑇𝑨 and𝑯 has

two inputs, 𝐼𝑙 = {8, 9} and 𝐼𝑟 = {10}. Hence, we use 𝑂 ({8, 9}, {10})
to represent the operator of this multiplication.
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Figure 6: An Example of the Dynamic Programming-based Method Processing DFP

Table 1: Notations of Dynamic
Programming-based method

Symbol Meaning

𝑂 (𝐼𝑙 , 𝐼𝑟 ) An operator 𝑂 with inputs, 𝐼𝑙 and

𝐼𝑟

𝑐𝑂 (𝐼𝑙 ,𝐼𝑟 ) A cost of𝑂 (𝐼𝑙 , 𝐼𝑟 )
C𝑂 (𝐼𝑙 ,𝐼𝑟 ) An accumulated cost of𝑂 (𝐼𝑙 , 𝐼𝑟 )
C𝐼𝑖 An accumulated cost of 𝐼𝑖

𝑐′
𝑂 (𝐼𝑙 ,𝐼𝑟 )

A candidate cost of𝑂 (𝐼𝑙 , 𝐼𝑟 )

C′
𝑂 (𝐼𝑙 ,𝐼𝑟 )

An accumulated cost of 𝑂 (𝐼𝑙 , 𝐼𝑟 )
containing candidate costs

C′
𝐼𝑖

An accumulated cost of 𝐼𝑖 contain-

ing candidate costs

Building with LSE.We start with the building phase that involves

an LSE option (e.g., of 𝑨𝑇𝑨). First, we evaluate the plan tree of

the LSE option, as depicted in the left tree in Figure 6(a). Then, we

visit the operator of the plan (e.g., the multiplication of 𝒈𝑇 and

𝑯𝑇𝑨𝑇𝑨𝑯 with a cost of 5). Accordingly, to build a cost graph, we

create 𝑂 ({6}, {7, 8, 9, 10}) with two inputs, 𝒈𝑇 and 𝑯𝑇𝑨𝑇𝑨𝑯 , and

the cost of 5, as shown in Figure 6(b). Recursively, we visit the

downstream operator, the multiplication of 𝑯𝑇
and𝑨𝑇𝑨𝑯 . Similar

to 𝑂 ({6}, {7, 8, 9, 10}), we create 𝑂 ({7}, {8, 9, 10}) underneath the

input, {7,8,9,10}.

In particular, the LSE option reuses the output of𝑂 ({8}, {9}) dur-
ing the iterative process. Hence, we divide 𝑐𝑂 ( {8},{9}) by the num-

ber of iterations. If the cost of𝑂 ({8}, {9}) without LSE is 500 and the
algorithm requires 100 iterations, then 𝑐𝑂 ( {6},{7}) = 500/100 = 5.

Building with CSE. The right tree in Figure 6(a) illustrates the

evaluation result of the plan tree that applies a CSE option of

𝒈𝑇 · 𝑯𝑇
. Since the CSE option reuses the output of 𝑂 ({6}, {7})

in 𝑂 ({11}, {12}), we apportion the original cost of 𝒈𝑇 · 𝑯𝑇
(which

is 10) to 𝑐𝑂 ( {6},{7}) and 𝑐𝑂 ( {11},{12}) (which becomes 10/2 = 5).

As depicted in Figure 6(b), we append the reduced cost of 5 after

the original cost of 10, in 𝑂 ({6}, {7}).

4.3.2 Probing Phase. In the probing phase, we remove operators

and operator costs from a cost graph, to convert the graph into

a tree. In this converted tree, each operator input has only one

downstream operator, determining how to compute the operator

input, and each operator has only one cost, determining whether

to apply CSE or LSE. Furthermore, in order to obtain a tree having

the lowest overall cost, we devise a dynamic programming process.

In the following, we start with a simple case involving LSE only,

and then extend to the cases involving both CSE and LSE.

Probingwith LSE. In each step, the dynamic programming process

visits an operator 𝑂 with inputs 𝐼𝑙 and 𝐼𝑟 . Particularly, the process

minimizes the accumulated cost of 𝑂 (𝐼𝑙 , 𝐼𝑟 ), based on 𝑐𝑂 (𝐼𝑙 ,𝐼𝑟 ) and
the minimized accumulated cost of the downstream operators.

Definition 1. The accumulated cost of an operator 𝑂 (𝐼𝑙 , 𝐼𝑟 ),
consists of its own cost and the accumulated costs of 𝐼𝑙 and 𝐼𝑟 , i.e.,
C𝑂 (𝐼𝑙 ,𝐼𝑟 ) = 𝑐𝑂 (𝐼𝑙 ,𝐼𝑟 ) + C𝐼𝑙 + C𝐼𝑟 .

Definition 2. The accumulated cost of an operator input 𝐼𝑖
is the accumulated cost of an operator𝑂 underneath 𝐼𝑖 , i.e., C𝐼𝑖 = C𝑂 .

According to Definition 2, computing the accumulated cost of an

operator input involves picking one of the downstream operators.

Combined with Definition 1, this computation is a recursive process,

which would eventually pick a plan subtree from the graph, and add

up all operator costs of the subtree as the accumulated cost. Clearly,

for the top operator with no upstream operator, its accumulated cost

represents the overall cost of the entire plan tree. Hence, generating

the efficient plan with redundancy elimination is equivalent to

computing andminimizing the accumulated cost of the top operator.

In specific, when minimizing C𝑂 (𝐼𝑙 ,𝐼𝑟 ) , we have to minimize C𝐼𝑙
and C𝐼𝑟 , related to the accumulated costs of downstream operators.

In the case involving LSE only, we minimize C𝑂 (𝐼𝑙 ,𝐼𝑟 ) as follows.{
𝑚𝑖𝑛 C𝑂 (𝐼𝑙 ,𝐼𝑟 ) =𝑚𝑖𝑛 𝑐𝑂 (𝐼𝑙 ,𝐼𝑟 ) +𝑚𝑖𝑛 C𝐼𝑙 +𝑚𝑖𝑛 C𝐼𝑟 , (7)

𝑚𝑖𝑛 C𝐼𝑖 = min({𝑚𝑖𝑛 C𝑂 | 𝑂 is underneath 𝐼𝑖 }). (8)

In Equation 7, 𝑚𝑖𝑛 𝑐𝑂 (𝐼𝑙 ,𝐼𝑟 ) means picking the minimal cost for

𝑂 (𝐼𝑙 , 𝐼𝑟 ) (Line 12 in Algorithm 1), and𝑚𝑖𝑛 C𝐼𝑖 means picking the

downstream operator with the minimal accumulated cost (Line 17

in Algorithm 1). Recursively, Equation 8 uses Equation 7 to calculate

𝑚𝑖𝑛 C𝑂 for a downstream operator 𝑂 (Line 16 in Algorithm 1).

Equations 7 and 8 compose the dynamic programming process to

minimize the accumulated cost of an operator. Eventually, after we

minimize the accumulated cost of the top operator, the cost graph

will indicate the efficient plan tree with redundancy elimination.

Example 4.1. In Figure 6(b), there are 𝑂 ({6}, {7, 8, 9, 10}) and
𝑂 ({6, 7, 8, 9}, {10}) underneath the operator input {6, 7, 8, 9, 10}. In
order tominimizeC{6,7,8,9,10} , we have tominimizeC𝑂 ( {6},{7,8,9,10})
and C𝑂 ( {6,7,8,9},{10}) , respectively. Suppose there is no CSE of

𝒈𝑇𝑯𝑇
, which leads to𝑚𝑖𝑛 C𝑂 ( {6},{7}) = 10. In addition, we sup-

pose 𝑚𝑖𝑛 C{8} = 0, since there is no 𝑂 ({8}). Then, according to

Equations 7 and 8,

𝑚𝑖𝑛 C𝑂 ( {6,7},{8}) =𝑚𝑖𝑛 𝑐𝑂 ( {6,7},{8}) +𝑚𝑖𝑛 C{6,7} +𝑚𝑖𝑛 C{8}
=𝑚𝑖𝑛 𝑐𝑂 ( {6,7},{8}) +𝑚𝑖𝑛 C𝑂 ( {6},{7}) +𝑚𝑖𝑛 C{8}
= 50 + 10 + 0 = 60.



Eventually, through the recursion of Equations 7 and 8, we have

𝑚𝑖𝑛 C𝑂 ( {6,7,8,9},{10}) = 95 for 𝑂 ({6, 7, 8, 9}, {10}). Similarly, we

also have𝑚𝑖𝑛 C𝑂 ( {6},{7,8,9,10}) = 40 for 𝑂 ({6}, {7, 8, 9, 10}). Since
𝑚𝑖𝑛 C𝑂 ( {6},{7,8,9,10}) is smaller, we pick 𝑂 ({6}, {7, 8, 9, 10}) for the
operator input {6, 7, 8, 9, 10}. That is,𝑚𝑖𝑛 C{6,7,8,9,10} = 40.

Probing with CSE and LSE. Next, we extend the probing phase

to the cases involving CSE and LSE. For simplicity, we term an

operator cost reduced by CSE as a CSE cost. The most difference

here is that a group of CSE costs are relevant (e.g., the CSE costs

of 𝑂 ({6}, {7}) and 𝑂 ({11}, {12})). That is, due to CSE, an operator

cost is apportioned among those CSE costs. Hence, we pick either

the whole group of relevant CSE costs or none of them. However,

the aforementioned dynamic programming process does not handle

such cases. For example, when minimizing C𝑂 ( {6,7,8,9},{10}) , we
would have picked𝑚𝑖𝑛 C𝑂 ( {6},{7}) = 5. Nonetheless, at that time,

it is unknown whether we would also pick𝑚𝑖𝑛 C𝑂 ( {11},{12}) = 5 to

minimize the accumulated costs in the upstream of 𝑂 ({11}, {12}).
Hence, we have to pass the accumulated costs containing CSE costs

(e.g., C𝑂 ( {6},{7}) = C𝑂 ( {11},{12}) = 5) to upstream as candidates,

until we can determine whether to pick those CSE costs. Accord-

ingly, we define candidate costs as follows.

Definition 3. For any operator 𝑂 (𝐼𝑙 , 𝐼𝑟 ), if there is a CSE cost
𝑐𝑂 (𝐼𝑙 ,𝐼𝑟 ) , then the cost is a candidate for 𝑂 (𝐼𝑙 , 𝐼𝑟 ) and its upstream
operators, denoted as 𝑐 ′

𝑂 (𝐼𝑙 ,𝐼𝑟 ) .

To probe with CSE and LSE, we extend the dynamic program-

ming process with candidate costs. The main idea is to maintain a

candidate set of accumulated costs and gradually reduce this set, so

as to finally minimize the accumulated cost of the top operator, dur-

ing the dynamic programming process. In specific, when visiting

an operator 𝑂 (𝐼𝑙 , 𝐼𝑟 ), we first minimize C𝑂 (𝐼𝑙 ,𝐼𝑟 ) with no candidate

cost, following Equations 7 and 8. Then, we calculate a candidate

set {C′
𝑂 (𝐼𝑙 ,𝐼𝑟 ) }, where each element contains at least one candidate

cost for 𝑂 (𝐼𝑙 , 𝐼𝑟 ), i.e.,
{C′

𝑂 (𝐼𝑙 ,𝐼𝑟 ) } = {𝑐𝑂 (𝐼𝑙 ,𝐼𝑟 ) + C
′
𝐼𝑙
+ C𝐼𝑟 |

𝑐𝑂 =𝑚𝑖𝑛 𝑐𝑂 or 𝑐 ′𝑂 ,C𝐼 =𝑚𝑖𝑛 C𝐼 or C
′
𝐼 ,

except 𝑐𝑂 =𝑚𝑖𝑛 𝑐𝑂 and both C𝐼 =𝑚𝑖𝑛 C𝐼 },
(9)

{C′𝐼𝑖 } = {C
′
𝑂 | 𝑂 is underneath 𝐼𝑖 }. (10)

Example 4.2. For the operator input {6, 7, 8, 9, 10}, we first mini-

mize C{6,7,8,9,10} with no candidate costs, so that𝑚𝑖𝑛 C{6,7,8,9,10} =
40 as shown in Example 4.1. Then, we consider the CSE of 𝒈𝑇𝑯𝑇

.

Due to the candidate cost 𝑐 ′
𝑂 ( {6},{7}) = 5, we have {C′

𝑂 ( {6},{7}) } =
{5}. For the upstream operator 𝑂 ({6, 7}, {8}), we use Equations 9
and 10 to maintain a candidate set of accumulated costs.

{C′
𝑂 ( {6,7},{8}) } = {𝑚𝑖𝑛 𝑐𝑂 ( {6,7},{8}) + C′{6,7} +𝑚𝑖𝑛 C{8}}

= {𝑚𝑖𝑛 𝑐𝑂 ( {6,7},{8}) + C′𝑂 ( {6},{7}) +𝑚𝑖𝑛 C{8}}
= {50 + 5 + 0} = {55}.

Here, {C′
𝑂 ( {6,7},{8}) } has only one element, because there is solely

one candidate cost. Recursively, we have {C′
𝑂 ( {6,7,8,9},{10}) } = {90}

for 𝑂 ({6, 7, 8, 9}, {10}), and thereby {C′{6,7,8,9,10}} = {90}.

After obtaining a candidate set of costs, we have to gradually

withdraw elements from the set, until it becomes empty. This with-

drawal means, we either pick an element from the candidate set to

minimize accumulated costs, or discard an element. In particular,

• We pick a group of relevant candidate costs, only if, in the joint

upstream of their operators, we find that the CSE improve the

performance. For example, whenminimizingC{6},{7} , we cannot
pick 𝑐 ′

𝑂 ( {6},{7}) = 5, because the performance impact of the CSE

of 𝒈𝑇𝑯𝑇
is unknown. That is, the relevant cost 𝑐 ′

𝑂 ( {11},{12}) is
not underneath {6, 7}, such that we do not know whether to

pick 𝑐 ′
𝑂 ( {11},{12}) at that time. Hence, we keep the candidate

costs, until, in the joint upstream of their operators, we have the

accumulated costs containing both 𝑐 ′
𝑂 ( {6},{7}) and 𝑐

′
𝑂 ( {11},{12}) ,

which indicates the impact of the CSE. Typically, we compare

C′
𝑂 (𝐼𝑙 ,𝐼𝑟 ) containing a group of relevant candidate costs with

𝑚𝑖𝑛 C𝑂 (𝐼𝑙 ,𝐼𝑟 ) , to determine whether to pick those candidates.

• We discard a group of relevant candidate costs, if each of them

cannot contribute to performance improvement. In specific, we

regard a candidate cost as useless, if the candidate cannot con-

tribute to performance improvement, i.e., minimize the accumu-

lated costs of the upstream operators. Further, if a whole group of

relevant candidate costs are useless, then the performance impact

of the CSE is negative. Hence, we discard those costs from the can-

didate set. As illustrated in Example 4.2, with 𝑐 ′
𝑂 ( {6},{7}) accumu-

lated, C′
𝑂 ( {6,7,8,9},{10}) = 90, larger than𝑚𝑖𝑛 C{6,7,8,9,10} calcu-

lated in Example 4.1. Therefore, we can conclude that 𝑐 ′
𝑂 ( {6},{7})

is useless for 𝒈𝑇𝑯𝑇𝑨𝑇𝑨𝑯 . Suppose we find both 𝑐 ′
𝑂 ( {6},{7})

𝑐 ′
𝑂 ( {11},{12}) useless for their upstream operators. We would

discard 𝑐 ′
𝑂 ( {6},{7}) and 𝑐 ′

𝑂 ( {11},{12}) at once, since the CSE of

𝒈𝑇𝑯𝑇
clearly does not improve performance.

According to the withdrawal of candidate costs, we remove op-

erator costs and operators from the cost graph. If we withdraw

𝑐 ′
𝑂 (𝐼𝑙 ,𝐼𝑟 ) from the candidate set, then we recalculate𝑚𝑖𝑛 𝑐𝑂 (𝐼𝑙 ,𝐼𝑟 )
and remove the other 𝑐𝑂 (𝐼𝑙 ,𝐼𝑟 ) (extension of Line 12 in Algorithm 1).

Additionally, in an operator underneath 𝑂 (𝐼𝑙 , 𝐼𝑟 ), if we withdraw a

candidate cost for𝑂 (𝐼𝑙 , 𝐼𝑟 ), thenwe recheck and remove the edge be-

tween 𝑂 (𝐼𝑙 , 𝐼𝑟 ) and the downstream operator (extension of Line 17

in Algorithm 1). This downstream operator has no candidate cost

and its costs are not picked in𝑚𝑖𝑛 C𝑂 (𝐼𝑙 ,𝐼𝑟 ) .
In general, considering both CSE and LSE, we use Equations 7

and 8 to determine the efficient execution plan as well. The differ-

ence is, we maintain a candidate set of accumulated costs through

Equations 9 and 10 to handle CSE costs, and recalculate the minimal

accumulated costs step by step based on the candidate set.

5 SYSTEM IMPLEMENTATION
For the implementation of ReMac, we explored open-source dis-

tributed solutions that produce high abstraction level for algorithm

specifications, including SystemDS [7], pbdR [23] (based on ScaLA-

PACK [2]), and SciDB [12]. According to a comparative evaluation

research for scalable linear algebra-based analytics [28], SystemDS,

pbdR, and SciDB are comparable on processing dense matrices.

However, pbdR treats sparse matrices as dense ones, and SciDB

does not widely support for sparse distributed matrices [31, 32].



&RPSLOHU

D�XVHU

VFULSW

2SWLPL]HU

&6(�DQG�/6(�RSWLRQV

5XQWLPH

([HFXWRU

WKH�HIILFLHQW�H[HFXWLRQ�SODQ�ZLWK�&6(�DQG�/6(

$GDSWHU &RVW�*UDSK

6HDUFKHU3DUVHU

3ODQ�*HQHUDWRU

IRU�DXWRPDWLF�

HOLPLQDWLRQ

IRU�DGDSWLYH�HOLPLQDWLRQ

FDQGLGDWH�H[HFXWLRQ�SODQV

Figure 7: System Architecture

Therefore, when processing sparsematrices, SystemDS outperforms

the others. Moreover, as shown in our experiments in Section 6.4,

SystemDS automatically switches the execution between local and

distributed mode, to avoid heavy communication cost. Hence, we

chose to implement ReMac on top of SystemDS.

Basically, ReMac performs automatic elimination to find elimina-

tion options at first. However, due to contradictory and detrimental

options, ReMac performs adaptive elimination to improve perfor-

mance further. In specific, the architecture of ReMac consists of a

compiler, an optimizer, and a runtime component, as depicted in

Figure 7. 1) The compiler parses a user script into a syntax tree, and

finds CSE and LSE options through our block-wise search. 2) For

each option, the optimizer generates candidate plan trees to build

a cost graph. Based on the cost graph, the optimizer adapts the

execution plan to the efficient combination of the options through

a dynamic programming process. 3) The runtime component takes

charge of the execution of the optimized plan. We can also switch

the components (e.g., the executor of SystemDS) to migrate ReMac

to other solutions. Moreover, with the customizable components,

ReMac is compatible to other optimization techniques. For example,

the plan generator employs operator fusion [9] of SystemDS. Simi-

larly, we can integrate other techniques into the plan generator.

6 EXPERIMENTAL STUDIES
Next, we will demonstrate the performance of ReMac employing

automatic elimination and adaptive elimination, respectively. In

addition, we evaluate other state-of-the-art solutions as references.

6.1 Experimental Setup
We conducted the performance analysis of five solutions, including

ReMac, SystemDS 2.0.0, SPORES [29], SciDB 19.3.5, and pbdR (based

on ScaLAPACK 2.0.2), on a seven-node cluster. Here, we use all

internal nodes in our research group to let the baselines have the

best performance. Each node has two Intel(R) Xeon(R) E5-2620 0

@ 2.00GHz six-core processors, 32GB DRAM, a 4TB hard disk and

1Gbps Ethernet. In addition, we deployed ReMac, SystemDS, and

SPORES upon Spark 3.0.1.

Algorithms. In our experiments, we chose three algorithms resolv-

ing linear regression problems. They were Gradient Descent (GD),

Davidon-Fletcher-Powell (DFP), and Broyden–Fletcher–Goldfarb–

Table 2: Dataset Statistics

Dataset Abbr. Rows# Columns# Sparsity Footprint

criteo1 cri1 116.8M 47 6.0 × 10−1 40.9GB

criteo2 cri2 58.4M 8.7K 4.5 × 10−3 30.0GB

criteo3 cri3 58.4M 15.0K 2.6 × 10−3 30.0GB

reddit1 red1 120.0M 34 5.1 × 10−1 30.4GB

reddit2 red2 104.5M 5.0K 3.9 × 10−3 31.5GB

reddit3 red3 104.5M 20.0K 9.6 × 10−4 31.5GB

Shanno (BFGS). In particular, GD involves loop-constant subex-

pressions, and DFP as well as BFGS involve both common and

loop-constant subexpressions.

Datasets. We conducted experiments based on two real-world

datasets, criteo2 and reddit3, akin to [21, 22, 28]. We conducted the

benchmark on differently sized samples of both datasets. Specifi-

cally, we used the benchmark script
4
to convert the criteo click logs,

and varied the lower bound of frequency for a raw feature to have

its own dimension [18]. Eventually, we obtained a dense matrix,

cri1, generated from the logs of the first two days, and two sparse

matrices, cri2 and cri3, generated from the logs of the first day. For

the reddit dataset, we performed feature-hashing [30] to vectorize

it into three different size of matrices by varying the number of

output features. The matrices include one dense matrix, red1, gen-
erated from the data of September to October 2018, and two sparse

matrices, red2 and red3, generated from the data of September 2018.

Table 2 lists the numbers of rows and columns, sparsity, and the

memory footprint of these datasets.

6.2 Performance of Automatic Elimination
In this section, we evaluate the overheads of different methods

searching for CSE and LSE. Moreover, we show the inefficiency of

blindly applying CSE and LSE.

6.2.1 Searching for CSE and LSE. Since the overhead of searching

for CSE and LSE is irrelevant to datasets, here we demonstrate the

experiments of all algorithms on one dataset, cri2. We compare the

compilation time, that SystemDS and ReMac, i.e., block-wise search,

take to find CSE and LSE. In addition, we implement a tree-wise

search upon SystemDS. This method traverses all plan trees in

multi-threading parallelism to find implicit CSE and LSE. We also

evaluate the compilation time of SPORES, which supports implicit

CSE. However, given that the current implementation of SPORES

does not support running DFP or BFGS entirely, we take the longest

subexpression that SPORES supports in DFP, 𝒅𝑇𝑨𝑇𝑨𝑯𝑨𝑇𝑨𝒅 (de-

noted as partial DFP), to conduct experiments.

As depicted in Figure 8(a), in comparison to SystemDS, the block-

wise search requires additional 61ms on average to find implicit

CSE and LSE for DFP, BFGS, and GD, which is insignificant against

the entire compilation. In contrast, due to the extremely high com-

plexity of the traversal, the tree-wise search requires additional 8.3

seconds on GD, and more than 8 hours on both DFP and BFGS. For

2
http://labs.criteo.com/2013/12/download-terabyte-click-logs-2/

3
http://files.pushshift.io/reddit/comments/

4
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

~
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Figure 8: Performance of Automatic Elimination

the partial DFP, SPORES and the block-wise search achieve com-

parable compilation time, whereas the tree-wise search requires

additional 2.8 seconds.

In general, while the tree-wise search is impractical for complex

algorithms, the block-wise search is able to find implicit CSE and

LSE with a minor overhead.

6.2.2 Applying CSE and LSE. We conducted experiments to study

the performance impact of CSE and LSE found in Subsection 6.2.1.

As depicted in Figure 8(b), we evaluated the execution time with

no CSE or LSE, i.e., disabling elimination for SystemDS (denoted

as SystemDS
∗
), the explicit CSE that SystemDS found, the CSE

and LSE found through the block-wise search, i.e., automatic elim-

ination, and the CSE that SPORES found. Note that the bars of

automatic elimination also represent the execution time along with

the tree-wise search, since the block-wise and tree-wise searches

output the same results. In addition, due to contradiction, automatic

elimination cannot apply all CSE and LSE options. Instead, it applies

as many options as possible.

DFP. For DFP, via explicit CSE, SystemDS achieves a 1.1x speedup

over SystemDS
∗
on cri1 and 1.8x speedups on average on the other

datasets. Further, automatic elimination applies more implicit CSE

and LSE to achieves speedups over SystemDS, which are 36.0x on

cri1 and red1, and 3.5x on red2. Nonetheless, automatic elimination

is also 1.8x slower than SystemDS on cri2, and 8.3x slower on cri3
and red3, illustrating implicit CSE and LSE may either improve or

decrease performance. In particular, automatic elimination applies

the implicit LSE of𝑨𝑇𝑨, which accelerates each iteration, yet incurs
extra overhead cost outside the loop. The extra overhead cost is

positively correlated with the size of 𝑨𝑇𝑨, which essentially relies

on the column number of the input dataset. Hence, the LSE becomes

more costly, causing performance degradation (e.g., on cri2, cri3,
and red3), as the column number of the dataset increases.

BFGS. As depicted in Figure 8(b), SystemDS does not benefit from

explicit CSE when running BFGS. Especially, SystemDS is over 1.9x

slower than SystemDS
∗
on cri2 and red2, and 11.4x on cri3 and

red3. That is, SystemDS employs the optimization rule of CSE first,

but then the applied CSE prevents SystemDS from the subsequent

optimization rules to improve the execution order of operators,

and decreases performance instead. Based on SystemDS, automatic

elimination applies more implicit CSE and LSE. The performance

improvement attributed to implicit CSE and LSE offsets the side

effect of the explicit CSE, achieving 42.1x speedups over SystemDS
∗

on cri1 and red1, and 5.3x speedups on cri2 and red2. However, on
cri3 and red3, due to the extremely negative influence of explicit

CSE, even automatic elimination is 2.5x slower than SystemDS
∗
.

GD. Since there is no CSE in GD and SystemDS does not sup-

port LSE, the execution of SystemDS and SystemDS
∗
are identical

for GD. Different from SystemDS, automatic elimination applies

LSE, which computes 𝑨𝑇𝑨 (𝑨 is an input dataset) and changes the

original execution order. As depicted in Figure 8(b), the LSE helps

automatic elimination become 25.8x faster than SystemDS on cri1,
red1, and red2, and 2.7x faster on cri2 and red3. However, because
of the change on the execution order, the LSE may also incur an

overwhelming overhead. Especially, the overhead of the LSE offsets

the performance improvement on cri3 and red3, resulting in compa-

rable performance between SystemDS and automatic elimination.

This is because, both cri3 and red3 are “fat” datasets with smaller

ratios of rows to columns than other datasets, in which case the

execution of 𝑨𝑇𝑨 becomes costlier.

Partial DFP. We also evaluate SystemDS
∗
, SystemDS, SPORES,

and automatic elimination for partial DFP. Here, the execution of

SystemDS
∗
and SystemDS is identical, since there is no explicit CSE

in partial DFP. As depicted in Figure 8(b), by applying implicit CSE,

automatic elimination achieves a 2.2x speedup over SystemDS on

average. Furthermore, SPORES explores implicit CSE as well. How-

ever, the performance of SPORES and SystemDS are comparable,

because SPORES only permutes a multiplication chain in a limited

number of attempts, and fails to find all implicit CSE. As a remedy,

SPORES depends on the fused mmchain operator to accelerate the

execution of multiplication chains. Nonetheless,mmchain only sup-
ports a multiplication chain of three matrices, and has constraints

on the column number of the second matrix (less than 1K in default).

For example, SPORES fails to use mmchain for partial DFP on cri3,
since the dataset matrix has 15K columns. As a result, SPORES is

not suitable for long multiplication chains.

In general, although SystemDS and SPORES support applying

CSE to improve performance, there still remain implicit CSE and

LSE not utilized. In the best case, automatic elimination achieves

a 41.5x speedup by applying implicit CSE and LSE. However, au-

tomatic elimination may also be extremely slower than SystemDS

and SPORES (e.g., 10.0x slower for DFP on cri3). This motivates us

to study adaptive elimination next.
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Figure 9: Overall Performance with Different CSE and LSE

6.3 Performance of Adaptive Elimination
Since it is essential to adapt CSE and LSE to different cases, we fur-

ther evaluate ReMac performing adaptive elimination. In addition,

to show the insights of the performance, we demonstrate the effi-

ciency and accuracy of the cost model and the effect of the dynamic

programming-based method used for adaptive elimination.

6.3.1 Overall Performance. Figure 9 shows the overall performance

of SystemDS, as a reference, and adaptive elimination on DFP, BFGS,

and GD. Furthermore, we take two alternative strategies that ap-

ply different elimination options. The “conservative strategy” only

applies the elimination options following the original execution

order of operators. Particularly, the conservative strategy applies

CSE after all optimizations improving the operator order, whereas

SystemDS applies CSE before certain optimizations, at the risk of

performance reduction (e.g., BFGS in Figure 8(b)). In addition, the

“aggressive strategy” applies the elimination options changing the

original execution order in prior and the other options in posterior.

DFP. The conservative strategy outperforms SystemDS by follow-

ing the original execution order of operators (10.4x faster on cri1
and red1, and 1.4x faster on the other datasets, in specific). How-

ever, the conservative strategy also fails to exploit the elimination

options changing the original execution order. On the other hand,

those options help the aggressive strategy achieve 3.2x speedups

over the conservative strategy on cri1 and red1, and a 1.8x speedup

on red2. However, there is a side effect of changing the execution
order (e.g., the elimination of 𝑨𝑇𝑨 and 𝒅𝒅𝑇 ), which may cause an

extreme performance degradation. Hence, the aggressive strategy

is 2.7x slower than the conservative strategy on cir2, 8.5x slower
on cri3, and 13.3x slower on red3.

Unlike the conservative or aggressive strategy, adaptive elimi-

nation applies different combinations of CSE and LSE on different

datasets. On cri1 and red1, since adaptive elimination is not bound

to the original execution order, it achieves 1.7x speedups over the

conservative strategy by applying more elimination options. On

cri3 and red3, adaptive elimination finds the CSE and LSE applied

by the aggressive strategy to be detrimental. Hence, adaptive elimi-

nation follows the conservative strategy, achieving 1.26x speedups

over SystemDS. Moreover, via picking elimination options, adaptive

elimination outperforms both conservative and aggressive strate-

gies by 2.5x on cri2 and red2 on average. For example, adaptive

elimination picks the option of𝑨𝑇𝑨, but not the detrimental option

of 𝒅𝒅𝑇 . However, the conservative strategy applies neither of the

two options, and the aggressive strategy applies both of them.
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Figure 10: Adaptive Elimination Using Different Methods

Even though adaptive elimination incurs an extra overhead cost

to pick CSE and LSE, the cost is affordable and worthy. For example,

although adaptive elimination is slower than the aggressive strategy

on cri1 and red1, it still achieves significant speedups over SystemDS

and outperforms the conservative strategy. More importantly, on

the other datasets, adaptive elimination avoids the performance

degradation incurred by the aggressive strategy.

BFGS. As depicted in Figure 9, the conservative strategy becomes

1.3x faster than SystemDS on cri1 and red1, 6.3x faster on red2, and
over 21.0x faster on the other datasets. Furthermore, the aggressive

strategy applies more CSE and LSE changing the original execution

order, to achieve 30.3x speedups over the conservative strategy on

cri1 and red1, and a 2.6x speedup on red2. Nonetheless, similar to

DFP, those CSE and LSE may also decrease performance for BFGS.

For example, the aggressive strategy is 1.8x slower than the con-

servative strategy on cri2, and 5.1x slower on cri3 and red3. Hence,
either the conservative or aggressive strategy has its shortcomings.

To mitigate this, ReMac employs adaptive elimination. On cri3
and red3, in comparison to the aggressive strategy, adaptive elimina-

tion ignores detrimental CSE and LSE, and achieves 5.0x speedups.

On the other datasets, adaptive elimination does not follow the re-

strictions of the conservative strategy, and achieves 16.9x speedups

over the conservative strategy on cri1 and red1, and 2.2x and 3.1x

speedups on cri2 and red2.
GD. Different from SystemDS, the conservative strategy applies the

additional LSE of a matrix-vector multiplication. However, with this

LSE only, the conservative strategy fails to resolve the performance

bottleneck and achieves merely 1.2x speedups over SystemDS on

average. Different from the conservative strategy, the aggressive

strategy also applies the LSE of a matrix-matrix multiplication, to

further improve performance. Consequently, adaptive elimination

follows the aggressive strategy, and achieves 6.7x speedups over

the conservative strategy on average.
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In summary, since the conservative strategy follows the original

execution order, it certainly outperforms SystemDS. Nonetheless,

this strategy is too conservative in applying CSE and LSE, and

thereby cannot fully explore the benefits of redundancy elimina-

tion. On the other hand, the aggressive strategy applies more CSE

and LSE, trying to achieve higher speedups, but it may suffer from

contradictory and detrimental elimination options. Hence, to ad-

dress this, ReMac adaptively applies elimination options, especially

those change the original execution order. Although adaptive elim-

ination incurs an extra overhead cost, it manages to outperform

conservative and aggressive strategies, and eventually achieves a

13.3x speedup over SystemDS on average.

6.3.2 Efficiency and Accuracy of Cost Model. Further, we examine

the efficiency and accuracy of our cost model in adaptive elimina-

tion, as shown in Figures 10. Here, we focus on the cost model using

different sparsity estimators with the dynamic programming-based

method (denoted as DP). DP-MD and DP-MNC represent using a

metadata-based sparsity estimator and MNC, respectively.

In terms of compilation time, i.e., the efficiency of cost evaluation,

DP-MD outperformsDP-MNC in each case, as shown in Figure 10(a).

From the perspective of elapsed time, the metadata-based sparsity

estimator helps ReMac become 1.6x faster than DP-MNC on cri1
and red1 on average, as shown in Figure 10(b). However, there are

cases DP-MD generates suboptimal execution plans, getting greater

performance degradation than cost evaluation, whereas DP-MNC

is able to generate more efficient plans. For example, for BFGS on

red2, DP-MNC is 3.7x faster than DP-MD.

In general, DP-MNC is 3.8x faster than DP-MD at most (for DFP

on red2), whereas DP-MD is 1.8x faster than DP-MNC at most (for

GD on cri1). Given that, we choose MNC as sparsity estimator for

adaptive elimination in ReMac to report the results in Section 6.3.1.

6.3.3 Effect of Dynamic Programming-based Method. We also eval-

uated the dynamic programming-based method used for adaptive

elimination and the brute-force enumeration (denoted as Enum) as

a reference. Here, we implemented two Enummethods that enumer-

ate elimination combinations in the depth-first and breadth-first

manner, respectively. Due to limited space, we show the faster of

the two Enum methods with respect to compilation time.

As depicted in Figure 10(a), we investigated the compilation time,

i.e., time for generating the efficient execution plan with redun-

dancy elimination, of DP and Enum methods. For GD, since the

expressions is simple enough, the two methods achieve comparable

performance. For DFP, the DP method addresses the combinatorial

explosion and outperforms the Enum method by 5.0x on average,

whatever sparsity estimator ReMac uses. Moreover, due to the com-

plexity of GNMF, the combinatorial explosion becomesmore critical,

resulting in the Enum method taking over three days. Whereas the

DP method costs less than 150 seconds.

In terms of elapsed time as depicted in Figure 10(b), the DP

method also outperforms the Enummethod. Note that the execution

time may dilute the advantages of the DP method. For example, for

DFP on cri2, cri3, red2, and red3, the DP method is only 1.1x faster

than the Enum method. Nonetheless, the cost of combinatorial

explosion remains overwhelming for DFP on cri1 and red1, and
GNMF. The DP method manages to mitigate this, and achieves 2.1x

speedups for DFP on cri1 and red1 and over 30x speedups for GNMF.

6.4 Comparison with Other Solutions
We showcase the advantages of ReMac in comparison to the state-

of-the-art solutions, including SystemDS, pbdR based on ScaLA-

PACK, and SciDB, corresponding to dataflow, HPC, and database

systems, respectively. Here, we conducted experiments on two

dense datasets, cri1 and red1, because ScaLAPACK and SciDB does

not widely support sparse matrices [31, 32]. In particular, ScaLA-

PACK treats sparse matrices as dense ones, and SciDB does not

support multiplying a sparse matrix by a dense matrix.

As depicted in Figure 11, SystemDS is 2.8x faster than pbdR and

SciDB, because SystemDS dynamically chooses to execute operators

in either local mode or distributed mode. In this way, SystemDS

saves significant communication overheads, whereas pbdR and

SciDB keep running in distributed mode. However, the shortcom-

ing of SystemDS is that it does not fully utilize CSE and LSE. As a

result, we built ReMac atop SystemDS, performing automatic elim-

ination and adaptive elimination. As shown in Figure 11, ReMac

benefits from the superiority of SystemDS and further achieves

14.4x speedups over SystemDS.

6.5 Discussion
In this section, we provide further insights on the performance

of distributed matrix computation, and how ReMac improves that.

Moreover, since sparse datasets are common to be skewed, we

discuss the impact of skewness on ReMac.

Input Partition Time. For fair comparisons, we conduct the ex-

periments in Sections 6.2 - 6.4 after partitioning data into systems.

That is, the input data has already been partitioned in HDFS for

SystemDS and ReMac, distributed across the cluster for pbdR, and

stored in a distributed table for SciDB. In general, we find the input

partition time is minor in SystemDS and ReMac, but significant in



pbdR and SciDB. We run DFP on cri2 without partitioning input

data in advance, and Figure 12 shows that SystemDS takes 3minutes

to partition cri2. By inheriting from SystemDS, ReMac achieves the

same input partition time. Here, ReMac still achieves a 1.9x speedup

over SystemDS, close to the 2.0x speedup with input partitioned in

advance as shown in Figure 9. Certainly, the input partition time is

minor and does not affect how ReMac applies CSE and LSE options.

Nonetheless, pdbR and SciDB take hours for input partition. In par-

ticular, both pbdR and SciDB do not support automatically splitting

and partitioning a dataset in parallel. Moreover, pbdR builds a dense

distributed matrix even if the data is sparse, and SciDB requires a

redimension operation to build a sparse matrix [3].

Performance Bottleneck. We analyse the performance of dis-

tributed matrix computation in the example of DFP on cri2. Except
for the aforementioned input partition, the total running time con-

sists of the compilation time as well as the computation time and

the time blocked by transmission during execution. According to

the results in Figure 12, the performance bottleneck is transmission,

which occupies 70% of the total time. However, ReMac reduces it to

22% via redundancy elimination. In particular, ReMac applies the

LSE of 𝑨𝑇𝑨, moving the distributed computation of Equation 2 out

of the loop. Hence, ReMac becomes 1.9x faster than SystemDS.

Skewness.Next, we evaluate the performance of ReMac on skewed

datasets. We generate five synthetic datasets skewed with Zipf

distributions, namely zipf-0.0, zipf-0.7, zipf-1.4, zipf-2.1, and zipf-2.8.
They have the same row and column numbers as well as the sparsity

of cri2, but their rows and columns skewed with Zipf exponents

from 0 to 2.8. Particularly, the non-zeros in zipf-0.0 follow a uniform

distribution, whereas in zipf-2.8, more than 95% of the non-zeros

gather in 5% of the rows and columns.

Figure 12 shows how ReMac handles the differently skewed data.

On average, ReMac is 1.7x faster than SystemDS. In specific, ReMac

reduces the transmission time by 27% on zipf-0.0, zipf-0.7, and zipf-
1.4, and 83% on zipf-2.1 and zipf-2.8. Here, a vital factor is, the

sparsity of intermediate matrices varies with the distributions of the

non-zeros in datasets. ReMac senses this difference via the sparsity

estimator of the cost model, and generates different execution plans

on those datasets. For DFP, ReMac finds the fact that the LSE of

𝑨𝑇𝑨 is actually detrimental on zipf-0.0, zipf-0.7, and zipf-1.4, but
efficient on zipf-2.1 and zipf-2.8. This leads to the different execution
plans and the jump in performance from zipf-1.4 to zipf-2.1.

Moreover, to explore the impact of skewness onwork balance, we

measure the data size processed by Spark workers in proportion. As

depicted in Figure 13, whether the data is skewed, the proportions

are close to 1/6. Since there are six workers, the results mean the

workload is balanced, which is actually attributed to SystemDS and

Spark. In specific, ReMac follows SystemDS to split a matrix into

1000×1000 blocks and partition them via hashing, and also exploits

the load balancing strategy of Spark. In general, ReMac mitigates

work imbalance with existing techniques of SystemDS and Spark.

7 RELATEDWORK
This section describes the related work on redundancy elimination

and distributed matrix computation.

Redundancy Elimination in Databases. The elimination of com-

mon subqueries has been widely studied in databases and data

analysis systems (e.g., PostgreSQL [1], Oracle Database [6], HP

Vertica [5], and Microsoft’s PDW [25]). The problem is also known

as Common Table Expressions (CTEs). Similar to CSE, the CTE opti-

mization reuses the results of common subqueries in multiple places

to improve performance. However, those systems only optimize

CTEs manually defined in SQL scripts (e.g., with “WITH” clauses),

unlike ReMac automatically searching for and applying CSE. In ad-

dition, Mitos [16] supports loop-invariant hoisting, i.e., the elimina-

tion of explicit loop-constant subqueries, whereas ReMac supports

both explicit and implicit LSE.

Furthermore, there are works focusing on achieving globally

optimal plans with CTE. Silva et al. [26] observe that queries with

CTEs may require different partition schemes of the CTE outputs,

and accordingly propose SCOPE trading off such conflicting re-

quirements in a cost-based manner. Based on SCOPE, El-Helw et

al. [13] further contribute to pruning the plan space for globally

optimal plans. They propose a plan enumeration technique with

specified transformation rules, which compute a lower bound on

the cost of an optimization, and depend on the lower bound to cut

off unnecessary CTE optimizations early on. The idea of achieving

globally optimal plans with CTE is similar to that of our adaptive

elimination. However, instead of plan enumeration, ReMac employs

a dynamic programming-based method to prune the plan space.

Distributed Matrix Computation. Distributed matrix computa-

tion is typically optimized from two aspects: the physical layouts

of distributed matrices and the execution plans. In particular, our

work focuses on optimizing execution plans, where the optimiza-

tion decisions also involves the existing works on physical layouts.

For physical layouts, the well-known large-scale solutions (e.g.,

MLlib [11] and SciDB [12]) partition distributed matrices into fixed-

size blocks, so as to accelerate the physical processing of binary

operators. Based on those works, we analyse the costs of operators

to help make decisions on redundancy elimination.

For execution plans, with respect to redundant subexpressions,

SystemDS [8] and MATFAST [32] only have limited support for

explicit CSE or LSE, whereas ReMac exploits both explicit and

implicit CSE and LSE. In addition, SPORES [29] centers on the

study of operator fusion [9, 14] considering CSE. However, it uses

a sampling technique to handle the large search space, particularly

for multiplication chains, which has no guarantee to find all CSE.

Differently, ReMac is able to automatically find all CSE and LSE

with a negligible overhead. Furthermore, ReMac employs adaptive

elimination to achieve the efficient plan.

8 CONCLUSION
In this paper, we propose a new system, ReMac. In order to auto-

matically exploit both explicit and implicit redundancy elimination,

ReMac employs a block-wise search that finds CSE and LSE with

negligible overheads. Moreover, given that multiple elimination

options may be related to each other, ReMac adaptively chooses

the efficient combination of elimination options. To prevent the

combinatorial explosion in adaptive elimination, ReMac employs a

dynamic programming-based method. Presently, the ReMac pro-

totype is built on top of SystemDS. Compared to state-of-the-art

solutions including SystemDS, SciDB, and ScaLAPACK, ReMac is

over 13.3x faster across a range of algorithms. In addition, since the



techniques are independent with execution engines, it is possible

to integrate our work into other systems, like SciDB and Flink.
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